Galois groups and the multiplicative structure of field extensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois Groups of Maximal ̂ -extensions

Let p be an odd prime and F a field of characteristic different from p containing a primitive p\h root of unity. Assume that the Galois group G of the maximal p-extension of F has a finite normal series with abelian factor groups. Then the commutator subgroup of G is abelian. Moreover, G has a normal abelian subgroup with pro-cyclic factor group. If, in addition, F contains a primitive p2th roo...

متن کامل

Galois Groups of Radical Extensions

Theorem 1.1 (Kummer theory). Let m ∈ Z>0, and suppose that the subgroup μm(K) = {ζ ∈ K∗ : ζ = 1} of K∗ has order m. Write K∗1/m for the subgroup {x ∈ K̄∗ : x ∈ K∗} of K̄∗. Then K(K∗1/m) is the maximal abelian extension of exponent dividing m of K inside K̄, and there is an isomorphism Gal(K(K∗1/m)/K) ∼ −→ Hom(K∗, μm(K)) that sends σ to the map sending α to σ(β)/β, where β ∈ K∗1/m satisfies β = α.

متن کامل

the underlying structure of language proficiency and the proficiency level

هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...

15 صفحه اول

The Structure of Weak Coalgebra-galois Extensions

Weak coalgebra-Galois extensions are studied. A notion of an invertible weak entwining structure is introduced. It is proven that, within an invertible weak entwining structure, the surjectivity of the canonical map implies bijectivity provided the structure coalgebra C is either coseparable or projective as a C-comodule.

متن کامل

Counting Hopf Galois Structures on Non-abelian Galois Field Extensions

Let L be a field which is a Galois extension of the field K with Galois group G. Greither and Pareigis [GP87] showed that for many G there exist K-Hopf algebras H other than the group ring KG which make L into an H-Hopf Galois extension of K (or a Galois H∗object in the sense of Chase and Sweedler [CS69]). Using Galois descent they translated the problem of determining the Hopf Galois structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1992

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1992-1036008-5